m'list
博文/视频教程:
Hyplus目录
1 Transformers
Year | Model | Conf/Jour | Rank | Notes |
---|---|---|---|---|
2017 | Transformer | NeuralPS 2017 | CCF-A | 注意力机制 |
2019 | LogTrans | NeuralPS 2019 | CCF-A | |
2019 | Reformer | ICLR 2020 | CCF-A | |
2020 | Informer | AAAI 2021 | CCF-A | |
2021 | Autoformer | NeuralPS 2021 | CCF-A | 样本特征找周期 |
2021 | Pyraformer | ICLR 2022 | - | |
2022 | FEDformer | ICML 2022 | CCF-A | |
2022 | PatchTST | ICLR 2023 | - | 片段;DLinear通道独立策略 |
2022 | Crossformer | ICLR 2023 | - | |
2022 | Stationary | NeuralPS 2022 | CCF-A | |
2023 | PETformer | ArXiv | - | |
2023 | iTransformer | ICLR 2024 (spotlight) | - | 多变量关系依赖 |
2024 | Sageformer | IEEE Internet of Things Journal (IotJ) | 1区;CCF-C | GCN;全局Token |
2024 | Contiformer | NeuralPS 2024 | CCF-A |
LLM模型:
- A decoder-only foundation model for time-series forecasting(TimesFM)
- Time-llm: Time series forecasting by reprogramming large language models(Time-LLM)
- Financial Fine-tuning a Large Time Series Model(对时序大模型微调以预测资产价格)
- ChatEV: Predicting electric vehicle charging demand as natural language processing (微调;EV)
- Are Transformers Effective for Time Series Forecasting?(cmp;Dlinear see above)
综述:
- Foundation Models for Time Series Analysis: A Tutorial and Survey(TSFM (Time Series Foundation Models) 综述;2024)
- Time-Series Large Language Models: A Systematic Review of State-of-the-Art(综述;2025)
- Transformers in Time Series: A Survey(2023)
2 CNN/RNN/GNN方法
Year | Model | Conf/Jour | Rank | Notes |
---|---|---|---|---|
2017 | STGCN | IJCAI 2018 | CCF-A | CNN |
2018 | LSTNet | SIGIR 2018 | CCF-A | CNN+LSTM |
2019 | Graph Wavenet | IJCAI 2019 | CCF-A | CNN+GNN |
2020 | MTGNN | KDD 2020 | CCF-A | CNN+GNN |
2020 | STSGCN | AAAI 2020 | CCF-A | GCN |
2022 | TimesNet | ICLR 2023 | - | CNN |
2022 | MSDR | KDD 2022 | CCF-A | RNN |
2023 | WITRAN | NeuralPS 2024 | CCF-A | RNN |
2023 | CrossGNN | NeuralPS 2023 | CCF-A | GNN |
CNN在应用中经常与GNN结合,以处理以上的多变量依赖关系的问题。
MSDR与GNN结合,并应用在交通流量预测领域。暂视为多变量时序预测。
其他网络:
- TCN
- Wavelet-Enhanced Hybrid LSTM-XGBoost Model for Predicting Time Series Containing Unpredictable Events(2025;LSTM-XGBoost,用于预测包含不可预测事件的时间序列,如疫情、电力消耗预测领域)【!】
综述:
- Deep Learning for Time Series Forecasting: Tutorial and Literature Survey(2022)
- Time-series forecasting with deep learning: a survey(2025;PHILOSOPHICAL)
- Advancements in time series analysis using deep learning(2025;Tesi_dottorato_Succetti.pdf)
- A survey on long short-term memory networks for time series prediction(2021;LSTM)
数据处理:
- Clustering of time series data—a survey(2005;Cited by 3600+)
其他Time Series任务:
4 reel?
see ya laterl